Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Galaxy cluster mergers are excellent laboratories for studying a wide variety of different physical phenomena. An example of such a cluster system is the distant SPT-CLJ2228-5828 merger located atz ≈ 0.77. Previous analyses via the thermal Sunyaev-Zeldovich effect and weak lensing (WL) data suggested that the system was potentially a dissociative cluster post-merger, similar to the Bullet cluster. In this work, we perform an X-ray and optical follow-up analysis of this rare system. We used new deepXMM-Newtondata to study the hot gas in X-rays in great detail, spectroscopicGeminidata to precisely determine the redshift of the two mass concentrations, and newHubbleSpace Telescope data to improve the total mass estimates of the two components. We find that SPT-CLJ2228-5828 constitutes a pre-merging double cluster system instead of a post-merger as previously thought. The merging process of the two clusters has started, with their gas on the outskirts colliding with a ∼22° −27° on the plane of the sky. Both clusters have a similar radius ofR500 ∼ 700 kpc, with the two X-ray emission peaks separated by ≈1 Mpc (2.1′). We fully characterized the surface brightness, gas density, temperature, pressure, and entropy profiles of the two merging clusters for their undisturbed non-interacting side. The two systems have very similar X-ray properties, with a moderate cluster mass ofMtot ∼ (2.1 − 2.4)×1014 M⊙according to X-ray mass proxies. Both clusters show good agreement with known X-ray scaling relations when their merging side is ignored. The WL mass estimate of the western cluster agrees well with the X-ray-based mass, whereas the eastern cluster is surprisingly only marginally detected from its WL signal. A gas bridge with ≈333 kpc length connecting the two merging halos is detected at a 5.8σlevel. The baryon overdensity of the excess gas (not associated with the cluster gas) isδb ∼ (75 − 320) across the length of the bridge, and its gas mass isMgas ∼ 1.4 × 1012 M⊙. The gas density and temperature jumps at ∼10−3cm−3and ∼5.5 keV, respectively, are also found across the gas bridge, revealing the existence of a weak shock front with a Mach number ℳ ∼ 1.1. The gas pressure and entropy also increase at the position of the shock front. We estimate the age of the shock front to be ≲100 Myr and its kinetic energy ∼2.4 × 1044erg s−1. SPT-CLJ2228-5828 is the first such high-zpre-merger with a gas bridge and a shock front, consisting of similarly sized clusters, to be studied in X-rays.more » « lessFree, publicly-accessible full text available February 1, 2026
-
ABSTRACT We present MUSE spectroscopy, Megacam imaging, and Chandra X-ray emission for SPT-CL J0307-6225, a $z = 0.58$ major merging galaxy cluster with a large BCG-SZ centroid separation and a highly disturbed X-ray morphology. The galaxy density distribution shows two main overdensities with separations of 0.144 and 0.017 arcmin to their respective BCGs. We characterize the central regions of the two colliding structures, namely 0307-6225N and 0307-6225S, finding velocity derived masses of M200, N = 2.44 ± 1.41 × 1014M⊙ and M200, S = 3.16 ± 1.88 × 1014M⊙, with a line-of-sight velocity difference of |Δv| = 342 km s−1. The total dynamically derived mass is consistent with the SZ derived mass of 7.63 h$$_{70}^{-1}$$ ± 1.36 × 1014M⊙. We model the merger using the Monte Carlo Merger Analysis Code, estimating a merging angle of 36$$^{+14}_{-12}$$ ° with respect to the plane of the sky. Comparing with simulations of a merging system with a mass ratio of 1:3, we find that the best scenario is that of an ongoing merger that began 0.96$$^{+0.31}_{-0.18}$$ Gyr ago. We also characterize the galaxy population using Hδ and [O ii] λ3727 Å lines. We find that most of the emission-line galaxies belong to 0307-6225S, close to the X-ray peak position with a third of them corresponding to red-cluster sequence galaxies, and the rest to blue galaxies with velocities consistent with recent periods of accretion. Moreover, we suggest that 0307-6225S suffered a previous merger, evidenced through the two equally bright BCGs at the centre with a velocity difference of ∼674 km s−1.more » « less
An official website of the United States government
